Comamonas testosteroni, una breve revisión microbiológica

Artículo de Revisión

Autores/as

DOI:

https://doi.org/10.23936/rce.v3i4.48

Palabras clave:

Comamonas, Comamonas testosteroni, Revisión, Literatura de Revisión como Asunto

Resumen

El género Comamonas está vinculado a la familia Comamonadaceae, perteneciente a la subdivisión Beta del filo proteobacteria; se caracteriza principalmente por mantener una morfología de tipo bastones rectos o espirilos ligeramente curvos con tinción gramnegativa, movilidad mediada por un flagelo polar, etc., y destaca su metabolismo estrictamente respiratorio, con la capacidad incluso de utilizar nitratos por parte de ciertas especies como fuente de energía; el microorganismo Comamonas testosteroni, descrito en 1956 y reclasificado en 1987 ha sido reportado como patógeno oportunista en diversas patologías de la especie humana, destacando bacteriemias por apendicitis, celulitis e incluso endocarditis o endoftalmitis, convirtiéndolo en un agente microbiológico de importancia.

Biografía del autor/a

Henry Jr. Parra Vera, Centro de Investigación Microbiológica (CIM), Ecuador.

Microbiólogo del Centro de Investigación Microbiológica (CIM), Ecuador.

Buele-Chica Dayci Colombia, Centro de Investigación Microbiológica (CIM), Ecuador.

Microbióloga del Centro de Investigación Microbiológica (CIM), Ecuador.

Alex Daniel Jiménez Jiménez, Universidad Católica De Santiago de Guayaquil

Docente de la Universidad Católica De Santiago de Guayaquil.

Diana Carolina Altamirano Rodas, Universidad Católica de Santiago de Guayaquil

Docente de la Universidad Católica De Santiago de Guayaquil.

Roxana Marcela Quinde Zambrano, Universidad Católica Santiago de Guayaquil

Médico por la Universidad de Guayaquil - Ecuador

Maestrante de Gerencia en servicios de salud en la Universidad Católica de Santiago de Guayaquil - Ecuador.

César Antonio Morán Vargas, Universidad Católica de Santiago de Guayaquil

Médico por la Universidad Católica De Santiago de Guayaquil.

Citas

Palacio R, Cornejo C, Seija V. Comamonas kerstersii. Revista chilena de infectología. 2020;37(2): 147–148. https://doi.org/10.4067/s0716-10182020000200147.

Jara E, Morel MA, Lamolle G, Castro-Sowinski S, Simón D, Iriarte A, et al. The complex pattern of codon usage evolution in the family Comamonadaceae. Ecological Genetics and Genomics. 2018;6: 1–8. https://doi.org/10.1016/j.egg.2017.11.002.

Farfán-Cano G, Parra-Vera H, Ávila-Choez A, Silva-Rojas G, Farfán-Cano S. Primera identificación en Ecuador de Comamonas kerstersii como agente infeccioso. Revista chilena de infectología. 2020;37(2): 179–181. https://doi.org/10.4067/s0716-10182020000200179.

Willems A, Gillis M. Bergey’s Manual of Systematics of Archaea and Bacteria.. 1st ed. Wiley; 2015. https://doi.org/10.1002/9781118960608. [Accessed 15th September 2021].

Farfán Cano GG, Farfán Cano SG, Farfán Cano HR, Silva Rojas GA, Silva Rojas KJ. Revisión Acerca de Comamonas Kerstersii como Agente Infeccioso. Investigatio. 2021;(16): 1–7. https://doi.org/10.31095/investigatio.2020.16.1.

Farfán-Cano GG, Sarmiento-Bobadilla JA, Jara León EA, Crespo-Díaz CM, Silva-Rojas GA, Parra-Vera HJ, et al. Comamonas kerstersii strains on inpatients with acute appendicitis: review of literature and case report. InterAmerican Journal of Medicine and Health. 2021;4. https://doi.org/10.31005/iajmh.v4i.165.

Guirao Goris SJA. Utilidad y tipos de revisión de literatura. Ene. 2015;9(2): 0–0. https://doi.org/10.4321/S1988-348X2015000200002.

Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology. 1999;49(2): 567–576. https://doi.org/10.1099/00207713-49-2-567.

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. Genus Comamonas. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net). 2020. https://lpsn.dsmz.de/genus/comamonas [Accessed 15th September 2021].

Deng Y-L, Ruan Y-J, Zhu S-M, Guo X-S, Han Z-Y, Ye Z-Y, et al. The impact of DO and salinity on microbial community in poly(butylene succinate) denitrification reactors for recirculating aquaculture system wastewater treatment. AMB Express. 2017;7(1): 113. https://doi.org/10.1186/s13568-017-0412-3.

Wu Y, Zaiden N, Cao B. The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence. Frontiers in Microbiology. 2018;9: 3096. https://doi.org/10.3389/fmicb.2018.03096.

Jackson V, Pulse A, Odendaal J, Khan S, Khan W. Identification of metal-tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa. Water SA. 2012;38(1): 29–38. https://doi.org/10.4314/wsa.v38i1.5.

Marcus PI, Talalay P. Induction and purification of alpha- and beta-hydroxysteroid dehydrogenases. The Journal of Biological Chemistry. 1956;218(2): 661–674.

Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an Emended Description of the Genus Comamonas. International Journal of Systematic Bacteriology. 1987;37(1): 52–59. https://doi.org/10.1099/00207713-37-1-52.

Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D, Ebeling C, et al. BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis. Nucleic Acids Research. 2019;47(D1): D631–D636. https://doi.org/10.1093/nar/gky879.

Benach J, Filling C, Oppermann UCT, Roversi P, Bricogne G, Berndt KD, et al. Structure of Bacterial 3?/17?-Hydroxysteroid Dehydrogenase at 1.2 Å Resolution: A Model for Multiple Steroid Recognition † , ‡. Biochemistry. 2002;41(50): 14659–14668. https://doi.org/10.1021/bi0203684.

Paca J, Kosteckova A, Pacova L, Prell A, Halecky M, Paca Jr. J, et al. Respirometry kinetics of phenol oxidation by Comamonas testosteroni Pb50 under various conditions of nutritional stress. Brazilian Archives of Biology and Technology. 2010;53(6): 1519–1528. https://doi.org/10.1590/S1516-89132010000600030.

Wang Y-H, Huang Z, Liu S-J. Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. International Journal of Molecular Sciences. 2019;20(11): 2701. https://doi.org/10.3390/ijms20112701.

Muchesa P, Leifels M, Jurzik L, Hoorzook KB, Barnard TG, Bartie C. Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems. Parasitology Research. 2017;116(1): 155–165. https://doi.org/10.1007/s00436-016-5271-3.

Hong Y, Huang Z, Guo L, Ni B, Jiang C, Li X, et al. The ligand?binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure. Molecular Microbiology. 2019;112(3): 906–917. https://doi.org/10.1111/mmi.14326.

Huang Z, Wang Y-H, Zhu H-Z, Andrianova EP, Jiang C-Y, Li D, et al. Cross Talk between Chemosensory Pathways That Modulate Chemotaxis and Biofilm Formation. Msadek T (ed.) mBio. 2019;10(1). https://doi.org/10.1128/mBio.02876-18.

Li J, Luo F, Chu D, Xuan H, Dai X. Complete degradation of dimethyl phthalate by a Comamonas testosterone strain. Journal of Basic Microbiology. 2017;57(11): 941–949. https://doi.org/10.1002/jobm.201700296.

Aksu D, Diallo MM, ?ahar U, Uyaniker TA, Ozdemir G. High expression of ring-hydroxylating dioxygenase genes ensure efficient degradation of p-toluate, phthalate, and terephthalate by Comamonas testosteroni strain 3a2. Archives of Microbiology. 2021;203(7): 4101–4112. https://doi.org/10.1007/s00203-021-02395-3.

Nguyen OT, Ha DD. Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm of Comamonas testosteroni strain KT5 and Bacillus subtilis strain DKT. Annals of Microbiology. 2019;69(3): 267–277. https://doi.org/10.1007/s13213-018-1415-2.

Yaghoubi Khanghahi M, Strafella S, Allegretta I, Crecchio C. Isolation of Bacteria with Potential Plant-Promoting Traits and Optimization of Their Growth Conditions. Current Microbiology. 2021;78(2): 464–478. https://doi.org/10.1007/s00284-020-02303-w.

Wang Y, Chen H, Huang Z, Li X, Zhou N, Liu C, et al. PAPA , a peptidoglycan?associated protein, interacts with OMPC and maintains cell envelope integrity. Environmental Microbiology. 2021;23(2): 600–612. https://doi.org/10.1111/1462-2920.15038.

Albers P, Lood C, Özturk B, Horemans B, Lavigne R, van Noort V, et al. Catabolic task division between two near-isogenic subpopulations co-existing in a herbicide-degrading bacterial consortium: consequences for the interspecies consortium metabolic model: Near isogenic subpopulations in a herbicide-degrading consortium. Environmental Microbiology. 2018;20(1): 85–96. https://doi.org/10.1111/1462-2920.13994.

Wu Y, Ding Y, Cohen Y, Cao B. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Applied Microbiology and Biotechnology. 2015;99(4): 1967–1976. https://doi.org/10.1007/s00253-014-6107-7.

Tartar T, Sa?mak-Tartar A, Saraç M, Bakal Ü, Akbulut A, Kazez A. Does microbial resistance profile change in community-based intra-abdominal infections? evaluation of the culture results of patients with appendicitis. The Turkish Journal of Pediatrics. 2018;60(5): 520. https://doi.org/10.24953/turkjped.2018.05.008.

Peralta-Gil M, Bañoz Orozco M de los Á, Hernández Vega O, Chávez Vega M, Reyes González L, Guzmán Aparicio MCJ, et al. Análisis de los mecanismos de acción de los factores de transcripción de la familia LysR en Escherichia coli K-12. In: Memorias del Congreso Internacional de Investigación Academia Journals Hidalgo 2020. Hidalgo, México: Academia Journals; 2020. p. 1540–1345.

Zhuang W, Liu H, Li J, Chen L, Wang G. Regulation of Class A ?-Lactamase CzoA by CzoR and IscR in Comamonas testosteroni S44. Frontiers in Microbiology. 2017;8: 2573. https://doi.org/10.3389/fmicb.2017.02573.

Preena PG, Arathi D, Raj NS, Arun Kumar TV, Arun Raja S, Reshma RN, et al. Diversity of antimicrobial?resistant pathogens from a freshwater ornamental fish farm. Letters in Applied Microbiology. 2020;71(1): 108–116. https://doi.org/10.1111/lam.13231.

Gul M, Ciragil P, Bulbuloglu E, Aral M, Alkis S, Ezberci F. Comamonas testosteroni bacteremia in a patient with perforated acute appendicitis. Acta Microbiologica et Immunologica Hungarica. 2007;54(3): 317–321. https://doi.org/10.1556/amicr.54.2007.3.6.

Khalki H, Deham H, Taghouti A, Yahyaoui G, Mahmoud M. Appendicite à Comamonas testosteroni. Médecine et Maladies Infectieuses. 2016;46(3): 168–170. https://doi.org/10.1016/j.medmal.2015.12.009.

Cooper GR, Staples ED, Iczkowski KA, Clancy CJ. Comamonas (Pseudomonas) testosteroni endocarditis. Cardiovascular Pathology. 2005;14(3): 145–149. https://doi.org/10.1016/j.carpath.2005.01.008.

Nseir W, Khateeb J, Awawdeh M, Ghali M. Catheter-related bacteremia caused by Comamonas testosteroni in a hemodialysis patient: CRB caused by C. testosteroni. Hemodialysis International. 2011;15(2): 293–296. https://doi.org/10.1111/j.1542-4758.2010.00524.x.

Tsui T-L, Tsao S-M, Liu K-S, Chen T-Y, Wang Y-L, Teng Y-H, et al. Comamonas testosteroni infection in Taiwan: Reported two cases and literature review. Journal of Microbiology, Immunology and Infection. 2011;44(1): 67–71. https://doi.org/10.1016/j.jmii.2011.01.013.

Altun E, Kaya B, Taktako?lu O, Karaer R, Paydas S, Balal M, et al. Comamonas Testosteroni Peritonitis Secondary to Dislocated Intrauterine Device and Laparoscopic Intervention in a Continuous Ambulatory Peritoneal Dialysis Patient. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis. 2013;33(5): 576–578. https://doi.org/10.3747/pdi.2013.00007.

Reddy AK, Murthy SI, Jalali S, Gopinathan U. Post-operative endophthalmitis due to an unusual pathogen, Comamonas testosteroni. Journal of Medical Microbiology. 2009;58(3): 374–375. https://doi.org/10.1099/jmm.0.006072-0.

Farshad S, Norouzi F, Aminshahidi M, Heidari B, Alborzi A. Two cases of bacteremia due to an unusual pathogen, Comamonas testosteroni in Iran and a review literature. The Journal of Infection in Developing Countries. 2012;6(06): 521–525. https://doi.org/10.3855/jidc.2215.

Zhou Y, Ma H, Dong Z, Shen M. Comamonas kerstersii bacteremia in a patient with acute perforated appendicitis: A rare case report. Medicine. 2018;97(13): e9296. https://doi.org/10.1097/MD.0000000000009296.

Almuzara MN, Cittadini R, Vera Ocampo C, Bakai R, Traglia G, Ramirez MS, et al. Intra-Abdominal Infections Due to Comamonas kerstersii. Journal of Clinical Microbiology. 2013;51(6): 1998–2000. https://doi.org/10.1128/JCM.00659-13.

Almuzara M, Cittadini R, Estraviz ML, Ellis A, Vay C. First report of Comamonas kerstersii causing urinary tract infection. New Microbes and New Infections. 2018;24: 4–7. https://doi.org/10.1016/j.nmni.2018.03.003.

Antonie van Leeuwenhoek (1632 - 1723)

Publicado

2022-01-05

Cómo citar

Parra-Vera, H. J., Buele-Chica, D. C., Jiménez-Jiménez, A. D., Altamirano-Rodas, D. C., Quinde-Zambrano, R. M., & Morán-Vargas, C. A. (2022). Comamonas testosteroni, una breve revisión microbiológica: Artículo de Revisión. Ciencia Ecuador, 3(4), 1-9. https://doi.org/10.23936/rce.v3i4.48

Número

Sección

Ciencias de la Vida, Ciencias Biológicas y Ciencias de la Salud

Artículos más leídos del mismo autor/a